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Haptic-Enabled Decentralized Control of a Heterogeneous
Human-Robot Team for Search and Rescue

in Partially-known Environments
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Abstract—Teams of coordinated robots have been proven
useful in several high-impact applications, including urban search
and rescue (USAR) and disaster response. In this context, we
present a decentralized haptic-enabled connectivity-maintenance
control framework for heterogeneous human-robot teams. The
proposed framework controls the coordinated motion of a team
consisting of mobile robots and one human, for collaboratively
achieving various exploration and SAR tasks. The human user
physically becomes part of the team, moving in the same
environment of the robots, while receiving rich haptic feedback
about the team connectivity and the direction toward a safe path.
We carried out two human subjects studies, both in simulated
and real environments. Results show that the proposed approach
is effective and viable in a wide range of SAR scenarios. More-
over, providing haptic feedback showed increased performance
w.r.t. providing visual information only. Finally, conveying distinct
feedback regarding the team connectivity and the path to follow
performed better than providing the same information combined
together.

Index Terms—Human-Robot Teaming; Haptics and Haptic
Interfaces; Multi-Robot Systems.

I. INTRODUCTION

GROUND Urban Search and Rescue (USAR) robots are
already widely used in disaster scenarios [1], [2], while

aerial solutions are only recently raising interest [3], [4].
As disaster environments are generally highly dynamic and
unstructured, it is crucial to take advantage of the experience
of human rescuers, enabling them to control the robotic USAR
systems in a reactive and intuitive manner [1], [5].

This work presents an innovative approach to deal with
USAR situations, taking advantage of the promising capabilities
of coordinated multi-robot systems and wearable haptic inter-
faces. We propose a haptic-enabled connectivity-maintenance
framework able to manage the coordinated motion of a team
composed of mobile robots and one human. The human user
physically becomes part of the team, exploring/navigating
the environment together with the robots. At the same time,
she/he receives wearable haptic feedback about the team
connectivity level and/or the direction towards a safe path.
The connectivity information is generated by a decentralized
connectivity-maintenance algorithm that controls the motion
of the robots for keeping the team connected at all times [6].
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The navigation information is generated from an a priori map
of the environment. The user is always free to decide whether
and to what extent to follow the provided navigation cues, as
to account for the possible changes in the actual map of the
environment.

II. RELATED WORKS

Heterogeneous human-robot teams: We can identify
two main interaction paradigms for achieving an effective
interaction between humans and machines: one-way, where
the human provides the robots with some local information
(e.g., his or her position) [7], [8], and two-way, where the
human shares again some local information with the robots
but also receives back information regarding their states. These
interactions can be carried out either through physical [9] or
non-physical [10], [11] contacts between robots and operator.

Multi-robot control: A recent survey presents an ample
overview on target detection and tracking for multi-robot
systems [12], while other surveys on multi-robot organiza-
tion/coordination are available at [13], [14]. More recently,
Hashemipour et al. [15] described how to optimize first-
response robotic teams in terms of their size, teamwork skills,
and robot reliability. Results show that clustering microtasks
could improve operation performance. The opportunity of using
multi-robot teams in SAR operations has also captured the
attention of our Institutions, e.g., the European Union funded
the collaborative projects ICARUS, SHERPA, and AirBorne
to develop various robotic tools able to assist human-led
intervention teams.

Path planning: This field is very active and has evolved
to consider increasingly complex scenarios, cluttered environ-
ments, and fast-changing maps [16], [17], [18]. For example,
Kulich et al. [16] extended the Watchman Route Problem
(i.e., find the minimal closed route such that every point of
the environment can be seen from at least one point along
the route) for fully-automatic mission planning and control
of heterogeneous teams. More recently, Solana et al. [18]
used an T-RRT algorithm for pre-planning the connected paths
of a formation of robots using the generalized connectivity-
maintenance theory of [6].

Human guidance: Of course, as we want to leave users
free to make their own decisions, it is important to provide
them with timely and effective information, regarding the status
of the team and/or a safe direction to follow. Audio cues
have often been used to provide guidance cues, especially in
those situations where vision is compromised [19]. However,
as sensory limitations might affect both visual and auditory
capabilities, haptic feedback is very promising in our context.
Indeed, the haptic sense is spread throughout the body and
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Fig. 1. Block diagram. Given the environment map M and the initial/goal
positions for the human agent (xstart and xgoal), an offline planner (see
Sec. III-B) computes the list Γ of all possible paths from xstart to xgoal.
During the task, from all the current agents positions x, our algorithm computes
the best connectivity-maintenance control action Fλh (see (2)), the best path to
the goal γ∗, and the best next tile in γ∗ for the human agent to reach, M∗

ij ,
resulting in Fp (see (4)). Both forces are then sent to the feedback devices
(see Sec. IV-A4), informing the human agent about the formation connectivity
level and/or the direction of the path to follow.

can process a large amount of information, making it a truly
reliable and sensible choice for USAR scenarios. A variety of
wearable devices have been developed for providing guidance
feedback to humans, including bracelets and armbands [20],
belts [21], and shoes [22].

With respect to this existing literature, the contributions of
this work are the following: while there has been some work
combining mobile robots and humans in USAR operations [3],
this is the first time haptic feedback is employed in this scenario,
which we believe can significantly improve the understanding
of the robotic actions by the human operator. Moreover, we
also use wearable haptics in this context for the first time,
which is a paramount aspect to guarantee the mobility of the
human user within the team. Finally, with respect to [10], [11],
[20], here we provide multiple pieces of information through
the same haptic sensory channel, which is a first for mobile
robotics applications.

III. METHODOLOGY
Our control methodology consists of three main parts:

connectivity-maintenance control for the team of robots
(Sec. III-A), path planning for the human agent (Sec. III-B),
and information feedback on the team connectivity and go-to-
goal directions (Sec. III-C). The general architecture of the
system is summarized in Fig. 1.

A. Connectivity-maintenance control
We consider a group of N robots modeled as 3D-point

masses with positions xi ∈ R3, i ∈ { 1, · · · , N}, and double
integrator dynamics

ẍi = ui, i ∈ { 1, . . . , N}, (1)

with ui ∈ R3 being the force (control action) applied to
robot i, and vi = ẋi its velocity. Each robot is subject to

the connectivity-maintenance control described in [6]. This
control action steers each robot using a gradient-descent
strategy that guarantees connectivity maintenance of the
sensing/communication graph G representing the formation.
This connectivity maintenance strategy can account for several
constraints, e.g., avoiding obstacles and collisions, keeping
a non-occluded line-of-sight visibility, and keeping a desired
distance w.r.t. neighbors. These constraints are encoded, via
suitable weights, into the adjacency matrix A ∈ RN×N

associated to the graph G [6], from which one can compute the
so-called Laplacian matrix and its second smallest eigenvalue
λ2 that acts as a connectivity metric: λ2 > 0 for a connected
graph and λ2 = 0 otherwise [23].

The connectivity-maintenance control consists then in
a decentralized gradient descent of a potential function
V λ(λ2(x(t))) ≥ 0 of the connectivity eigenvalue λ2(x(t)). In
what follows, w.l.o.g. we denote λ2(x(t)) simply as λ2(t).
The potential V λ(λ2(t)) is designed so as to have a vertical
asymptote at λmin

2 > 0, to smoothly decrease from λmin
2 to

λmax
2 = λmin

2 + ∆, and to vanish for λ2(t) ≥ λmax
2 . The

connectivity maintenance control is then designed as the
gradient descent

Fλi = −∂V
λ(λ2(t))

∂xi
, (2)

whose evaluation by robot i can be made decentralized by
exploiting a decentralized estimation λ̂i2(t) of the true value
λ2(t), see [6]. The control input for robot i in (1) is then finally
designed as

ui = Fλi −Bivi + Fei , (3)

where Bi ∈ R3×3 is a damping term (for stability purposes),
and Fei ∈ R3 is an additional exogenous force that may act
on robot i. This latter exogenous input is not used in this
work (Fei = 0 for all i) but it can be used to enable, e.g., the
external control of one or more robots by a remote human
operator [24]. In presence of bounded external forces Fei , the
connectivity-maintenance control (3) is guaranteed to maintain
λ2(t) > λmin

2 > 0, ∀t. The human agent, referred to with i = h,
is considered as a ground mobile robot with elevation 0 m and
subject to no control inputs (see Sec. III-B), i.e., his or her
motion cannot be directly controlled by the algorithm.

B. Grid covering and path planning for the human agent

With the connectivity of the team guaranteed by the above
control technique, we want to guide the human agent towards
the goal. Recent studies show that the kinematics of the
human locomotion resembles that of a unicycle robot [25],
and that it is possible to provide the human user with guidance
along a predefined path using tactile feedback [26]. Of course,
although we can guide human agents with high accuracy [26],
deviations from the commanded path will inevitably occur.
These deviations can be due to users not being able to fully
understand and/or react to the haptic guidance, or due to users
willingly moving away from the path because of unforeseen
circumstances (e.g., unexpected obstacles blocking the indicated
path). Our planning technique aims at always providing the
best guidance to the human users, from their current position
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Fig. 2. Grid covering and path planning. The map is discretized in a grid of
resolution rgrid. Tiles occupied by obstacles (black) are discarded from the
planning (gray). The path planning algorithm generates paths from each tile
to the goal. The best path γ∗ will always be the shortest one from the current
position of the human agent to the goal, in terms of number of covered tiles.
Enlargement: From the current position of the user xh, the algorithm identifies
the center of the next tile to be reached, M∗

ij , on the current optimal path γ∗.
The difference between these two positions Fp (see (4)) provides the user
with information about the path to follow, while the connectivity force Fλi
(see (2)) informs the user about the connectivity level of the formation.

to the goal, while however leaving them free to deviate from
the planned path if needed.

We designed our planning inspired from the Ford Fulkerson
flow network method [27], which retrieves the maximal steady
state flow from an origin/start point to a terminal/goal one
(maxflow on a network problem). Below we include all the
details of our path planning algorithm.

Let us consider a known map of the environment M, which
describes the area surrounding the team, and let us divide
M in a grid of resolution rgrid ∈ R. Every tile on the map
Mij , i ∈ { 1, · · · , nrgrid}, j ∈ { 1, · · · , mrgrid}, n,m ∈ N,
can be free or occupied (e.g., by obstacles), as shown in
Fig. 2. W.l.o.g., we consider squared maps (n = m). Using
this notation, we can define the starting point for the algorithm
xstart ∈M as the tile occupied by the starting position of the
human agent and the goal location as the tile occupied by the
goal position xgoal ∈M.

To account for any deviation of the human user w.r.t. the
planned path, we compute valid paths from each tile of the
map to the goal. To do so in a efficient fashion, we start by
dividing M in large regions of resolution rreg , such that every
region on the map includes a certain number of tiles, i.e.,
rreg = qrgrid, q ∈ N. Then, we use a Breadth First Search
(BFS) algorithm to compute the shortest path γ1, going from
the initial location of the user xstart to the goal xgoal. We
store γ1 in a list of paths Γ and we mark each tile that it
covered. After that, we randomly select a new starting tile in
the region that includes the least number of covered tiles, and
we compute the new shortest path γ2 using the BFS algorithm.
Again, we store γ2 in Γ and we mark each tile that it covered.
We proceed iteratively in this way until all the tiles in M are
covered. This process has to be run only once per map.

With the map fully covered and all elements (paths) of Γ
ending at the goal, the best path will always be the shortest
one from the current position of the human to the goal, in

terms of number of covered tiles. Of course, our framework is
compatible with any other similar path planning technique.

As the human only relies on local information to compute
where the best path is headed (i.e., its own position and the
list of paths Γ), the overall framework is still decentralized.

C. Feedback to the local/remote rescuer

Finally, we need to provide the human rescuer with meaning-
ful information about (i) the current path to follow (Sec. III-B)
and (ii) the status of the team (Sec. III-A), which are both
important pieces of information. The former enables rescuers
to successfully reach the final goal, while the latter informs
them about the connectivity level of the team (e.g., so that
they can slow down if the team is not able to keep up with the
current moving pace). Being informed about the connectivity
of the team has been already proven useful when teleoperating
multiple drones [28]. The way of providing this information
can be tailored to the experience of the users (e.g., expert
rescuers or civilians), as detailed in our experimental Section.

To provide navigation information, let us define M∗
ij ∈ R2

as the center of the next tile along the current selected path1

γ∗, which passes from the human current position xh (see
enlargement in Fig. 2). The elevation of the human is set to
zero and thus, for simplicity, the third dimension of its position
vector is not considered here, i.e., xh ∈ R2. The resulting
difference force

Fp = κp(M∗
ij − xh) (4)

comprises information about where the human agent should go,
θp = atan((M∗

ij,y − xh,y)/(M∗
ij,x − xh,x)), and how close

he or she is to the center of the next tile. κp ∈ R+ is a positive
gain; in our application, κp = 1 N/m, but it can be adjusted to
reflect how much we let the operator deviate from the target
path. Quantities θp and dp will be used in Sec. IV-A4 for
providing visual or haptic feedback on the direction to follow.

For what concerns the formation status, we want to provide
the rescuer with information about the team connectivity. Let
us recall from Sec. III-A that every robotic agent in the team
is controlled following (3), where Fλi is the connectivity force
steering each agent i to a more connected state. Of course, we
cannot directly control the motion of the human as we do for
the robots. Nonetheless, we can still suggest Fλh through visual
or haptic feedback (we use index i = h for the human agent).
This force will be used in Sec. IV-A4 for designing visual or
haptic feedback techniques, so that human agents are informed
about the effect of their movements on the connectivity of the
formation.

IV. EXPERIMENTAL EVALUATION

A. Human subjects experiment in a simulated environment

1) Context: Imagine a post-disaster situation in which a
human civilian survivor is found by the robotic team and
escorted out of the area. As soon as the robots locate the
survivor, they release two vibrating bands that the human agent
wears on the right and left arms. Then, an expert rescuer

1Here we assume that the computing unit worn/brought by the human agent
is able to localize the agent and sort the path in Γ for obtaining M∗

ij .



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Fig. 3. (top) In the simulated environment, subjects play the remote expert
rescuer; they move the virtual civilian survivor toward the goal, acting on its
linear and angular velocities (vh and ωh) and following the feedback provided
by the system. (bottom) In the real environment, the subject plays the in-field
expert rescuer; they move toward the goal location following the feedback
information provided by the system.

remotely guides the survivor along a safe path, providing him
or her with navigation information by manually activating
the armbands. In turn, the rescuer is provided with feedback
information about the best path to follow and the connectivity of
the team (see Fig. 3 top). Navigation information to the remote
rescuer is generated from a priori map of the environment,
as described in Sec. III-A, while the connectivity metrics
is generated from the connectivity-maintenance algorithm,
as summarized in Sec. III-B. Finally, how this feedback
information is conveyed to the rescuer is described in Sec. III-C.
In this experiment, we assume that the survivor can closely
follow the indications of the remote expert rescuer using two
vibrotactile armbands, as already demonstrated in [26], [29].

The non-expert human agent in the field only needs to
follow simple navigation cues, while the expert remote agent is
provided with rich information enabling him or her to control
the situation. We believe this point to be rather relevant for
the considered application, as frightened non-trained civilians
cannot be asked to complete or understand complex commands
and tasks. The role of the robotic team is also quite important.
Ground mobile robots can carry medical and food supplies,
while aerial robots can provide the rescuer with a view of the
environment and look for other survivors.

2) Virtual environment and task: We consider two different
virtual scenes, S1 and S2, both composed of various urban
elements, including buildings and open walls, as shown in the
video (also available at https://youtu.be/N73QUFqpSvo). We
also consider two variations of each scene. One with no changes
with respect to the a priori map known by the system (S1free
and S2free) and one with unexpected obstacles blocking some
routes (S1occ and S2occ). These unexpected obstacles are
unknown to the system and therefore not accounted for in
the path planning of Sec. III-B. We consider these variations
to simulate situations in which the planner has only access
to an outdated version of the map, which might not perfectly
reflect the current status of the post-disaster environment. Our
heterogeneous team is composed of five virtual agents: one
human survivor, one ground mobile robot, and three quadrotors.
The virtual scene is displayed to the user through an LCD

TABLE I
LEVELS OF VIBROTACTILE STIMULI DEPENDING ON dθ

Range dθ Left armband Range dθ Right armband
(deg) vibration level [G] (deg) vibration level [G]

[ 0 , 20 ] 0 [ 0 , −20 ] 0
[ 21, 60 ] 0.6 [−21 , −60 ] 0.6
[ 61 , 100 ] 0.9 [−61 , −100 ] 0.9
[ 101 , 180 ] 1.2 [−101 , −180 ] 1.2

screen. Subjects play the role of the remote rescuer, and their
task consists in moving the simulated human survivor/virtual
agent toward the goal, following the feedback information
provided by the system.

3) Control interface: Subjects control the motion of the
virtual agent either through (i) an off-the-shelf joypad Logitech
Gamepad F310, or (ii) a grounded haptic device Novint Falcon.
When using the joypad, the right analog thumbstick commands
a linear velocity vh ∈ R to the virtual agent whereas the left
stick rotates it with angular velocity ωh ∈ S . When using the
haptic device, the Falcon is used to control the velocity of
the virtual agent. A displacement of the end-effector along the
negative z-axis (w.r.t. its initial position, see Fig. 4) commands
a linear velocity vh ∈ R, whereas a similar displacement along
the negative x-axis rotates it with angular velocity ωh ∈ S.

As discussed in Sec. IV-A1, we assume that the virtual agent
perfectly follows the navigation cues conveyed by the remote
expert operator. For this reason, as to simplify this interaction
and w.l.o.g., we have enabled the operator to directly control
its velocities, as detailed above.

4) Experimental modalities: We consider four experimental
conditions (see Fig. 4):

(VC) the joypad controls the human agent motion, and one arrow
provides combined information about the connectivity
force and the path direction;

(VS) the joypad controls the human agent motion, and two
separate arrows provide information about the connectivity
force and the path direction, respectively;

(HC) the Novint Falcon controls the human agent motion, and
kinesthetic feedback provides combined information about
the connectivity force and the path direction;

(HS) the Novint Falcon controls the human agent motion,
kinesthetic feedback provides information about the
connectivity force, and wearable vibrotactile feedback
provides information about the path direction.

Let us recall from Sec. III-C that Fλh is the connectivity
force applied to the user and Fp is the guidance force steering
the user along the current best path.

In condition VC, the user receives feedback about the
weighted sum of the two forces

Ft = 3

(
Fp
‖Fp‖

+
Fλh
‖Fλh‖

)
, (5)

represented as a single cyan arrow, starting from the position
of the human figure, with a max intensity of 6 N. In condition
VS, the remote expert receives feedback about the two forces
separately, represented as two distinct arrows, both starting
from the position of the virtual agent: red for Fλh and white
for Fp (see also Fig. 2). In condition HC, the user receives
feedback about the weighted sum of the two forces (as per (5)),

https://youtu.be/N73QUFqpSvo
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(VC) (VS)

(HC) (HS)

Fig. 4. Feedback modalities. We provide feedback about the path to follow,
Fp, and the connectivity of the team, Fλh, in these ways: (VC) the weighted
sum of the two forces, Fp and Fλh, is shown with a single arrow, (VS) the
two forces are shown as a two distinct arrows, (HC) the weighted sum of
the two forces is provided by the Falcon device as force feedback; (HS) Fp
is conveyed by the wearable armbands as vibrotactile feedback while Fλh is
provided by the Falcon device as force feedback.

represented as a force feedback produced by the Falcon device.
In condition HS, the remote expert receives feedback about the
two forces separately, i.e., Fλh conveyed by the Falcon device as
kinesthetic feedback and Fp conveyed by wearable vibrotactile
feedback. These latter stimuli are provided via a pair of custom
haptic armbands, worn on the right and left upper arms. Each
armband comprises four 307-100 Pico Vibe vibrating motors,
positioned evenly around the arm at 90 degrees from each
other. Each armband vibrates with frequency [ 0 – 255 ] Hz
and amplitude [ 0.2 – 1.2 ] G in square-wave-like vibration
patterns of ν ∈ R+, i.e., it vibrates for a period of 2ν ms
with duty cycle 50%. The four motors of one armband always
vibrate together. W.r.t. Sec. III-C, let us recall the direction of
the next point-to-be-reached on the path θp (see (4) and the
following definitions) and let us call the human orientation w.r.t.
a world frame θh. To efficiently convey direction information,
we define four different stimulus ranges on dθ = θp − θh (see
Table I and Fig. 2): no feedback (when |dθ| ∈ [ 0–20 ] deg),
weak feedback (21-60 deg), medium feedback (61-100 deg),
and strong feedback (101-180 deg). The sign of dθ (positive for
left turning, negative for right turning) tells us which armband
to activate. A similar guidance approach has been already
successfully employed in [11], [26].

Subjects: Twelve participants took part to our experiment,
including one woman and eleven men (age 23–32 years old).
Users performed one repetition of the task per feedback
condition per scenario, yielding a total of 4 experimental
modalities × 4 scenes = 16 trials per user and 192 trials
in total. Operators were asked to complete the task as fast as

TABLE II
HUMAN SUBJECTS EXPERIMENT

Conditions InterfaceInterface = V (joypad/visual), H (haptic)
Feedback typeFeedback type = C (combined), S (separated)
Variation of the sceneVariation of the scene =

free (map fully known), occ (map partially unknown)

Statistical analysis (repeated-measures ANOVA, a = 0.05)
Completion timeCompletion time (three-way)

V vs. H p = 0.005 C vs. S p = 0.001
free vs. occ p = 0.004

Path lengthPath length (three-way)
V vs. H p = 0.001 C vs. S p = 0.024
free vs. occ p < 0.001

Velocity of the virtual human agentVelocity of the virtual human agent (three-way)
V vs. H p < 0.001 C vs. S p = 0.003

Force feedback to the operatorForce feedback to the operator (three-way)
V vs. H p < 0.001

Connectivity level of the teamConnectivity level of the team (three-way)
No statistically significant differences were found.

Perceived effectivenessPerceived effectiveness (two-way)
V vs. H p < 0.001 C vs. S p = 0.001

possible, taking however into account the feedback received.
Results: We registered (i) the average task completion

time, (ii) the average length and (iii) linear velocity of the
simulated human agent, (iv) the average connectivity force
commanded to the human operator, and (v) the average con-
nectivity level of the whole formation. To compare the different
metrics, we ran three-way repeated-measures ANOVA tests
(significance level a = 0.05) [30]. The interface (joypad/visual
or haptic, V vs. H), feedback type (combined or separated,
C vs. S), and the presence of unexpected obstacles (yes or
not, free vs. occ) were the within-subject factors. Data from
the two scenes were normalized and averaged. All the data
passed the Shapiro-Wilk normality test. Table II summarizes
the results.

Fig. 5a shows the average normalized task completion time.
It was calculated as the time it took the virtual agent to move
from the starting position to the goal, divided by the best
registered performance (≈ 137 s). The ANOVA test revealed a
statistically significant change in the task completion time for
the interface [F-test statistic F(1,11) = 12.509, p-value for the
F statistics p = 0.005], feedback modality [F(1,11) = 20.595,
p = 0.001] and obstacles [F(1,11) = 13.315, p = 0.004]
variables. Fig. 5b shows the average normalized path traveled
by the simulated agent. It was calculated as the length of its
linear trajectory, divided by the best registered performance
(≈ 34 m). The ANOVA test revealed a statistically significant
change in the task traveled path for the interface [F(1,11)
= 18.387, p = 0.001], feedback modality [F(1,11) = 6.870,
p = 0.024] and obstacles [F(1,11) = 43.620, p < 0.001]
variables. Fig. 5c shows the average velocity of the simulated
agent. It was calculated as the average norm of vh. The ANOVA
test revealed a statistically significant change in the agent’s
velocity for the interface [F(1,11) = 27.258, p < 0.001] and
feedback modality [F(1,11) = 14.886, p = 0.003] variables.
Fig. 5d shows the average force applied to the operator. It was
calculated as the average norm of Ft. The ANOVA test revealed
a statistically significant change in the applied force for the
interface [F(1,11) = 611.703, p < 0.001] variable. Fig. 5e
shows the average connectivity level of the team, i.e., λ2. The
ANOVA test revealed no statistically significant change in the
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Fig. 5. Human subjects experiment. Mean and 95% confidence interval of
(a) completion time, (b) normalized path, (c) velocity, (d) force applied, (e)
connectivity level, and (f) perceived effectiveness for the four conditions in
the two scene variations free and occ.

connectivity level for the considered variables.
At the end of the experiment, we asked the participants

to rate the perceived effectiveness of the four experimental
conditions (VC vs. VS vs. HC vs. HS). The responses were
given using bipolar Likert-type scales that ranged from 0 to
10, where a score of 0 meant “very low” and a score of 10
meant “very high” [31], [32]. To compare this metrics, we ran
a two-way repeated-measures ANOVA test (a = 0.05). The
interface (H vs. V) and feedback modality (C vs. S) were the
within-subject factors. Data were transformed using a square-
root transformation before running the statistical analysis. The
transformed data passed the Shapiro-Wilk normality test. Fig. 5f
shows the perceived effectiveness of the four experimental
conditions. The ANOVA test revealed a statistically significant
change in the perceived effectiveness for both the interface
[F(1,11) = 83.993, p < 0.001] and feedback modality [F(1,11)
= 19.288, p = 0.001] variables.

Finally, six subjects out of twelve found condition HS to be
the most effective at completing the task, followed by VS (four
subjects) and VC (two subjects). Similarly, five subjects out
of twelve found condition VS to be the easiest to understand

and use, followed by HS (three subjects), VC (two subjects),
and HC (two subjects).

B. Representative task in a real environment

1) Context: Imagine a post-disaster situation in which an
expert rescuer is escorted by the robotic team inside a disaster
area with the aim of reaching a certain point of interest (e.g.,
a survivors shelter). He or she is equipped with two vibrating
bands on the right and left arms. The rescuer moves in the
same environment of the robots, directly receiving information
about the best path to follow and the connectivity of the team
(see Fig. 3 bottom). Feedback information is generated as
in Sec. IV-A. Since the rescuer needs to move freely, here
all information is provided through the wearable vibrotactile
armbands. No remote operator is needed in this case.

2) Real environment, task, and subject: One variation of the
scene has no changes with respect to the a priori map known
by the system (S3free) while the other one has unexpected
obstacles blocking some routes (S3occ, shown in Fig. 6). These
unexpected obstacles are unknown to the system and therefore
not accounted for in the path planning of Sec. III-B. As in
Sec. IV, we consider these variations to take into account
situations in which the planner has only access to an outdated
version of the map. Our heterogeneous team is composed of
four real agents: one human operator, one mobile robot, and
two quadrotors. All agents move in the instrumented space.
We use two quadrotors from MikroKopter (Germany) and one
Pioneer P3-DX mobile robot from Omron Adept (USA), all
controlled at 50 Hz.

The subject plays the role of the expert rescuer, and the
task consists in moving toward the goal location, following
the feedback information provided by the system. The starting
points and goal locations are shown in Fig. 6a and were the
same for both scenes.

3) Experimental modalities: We provide the operator with
feedback information about the path to follow and the con-
nectivity information using a fully-wearable solution. This
information is conveyed using the two armbands, in a smart
combination of conditions HC and HS. In particular, we provide
the user with information on Ft, as calculated in (5), using
two armbands. The policy to activate the two armbands in the
same used for condition HS in Sec. IV-A4 and Table I, i.e.,
more vibrations on one side indicate that Ft points in that
direction (similarly to Fp in Fig. 4-HS).

4) Results: Figure 6 shows the experiment in the variation
with the unexpected obstacle (circled in orange in Figure 6b).
Specifically, Fig. 6a shows the trajectories of the four agents
(blue: human, cyan: mobile robot, red and green: quadrotors).
Figure 6b shows three moments of the experiment, at t =
0, Tf/2, Tf with Tf = 129 s, from the point of view of a
videocamera placed at around (5, -3) m.

The operator was able to successfully complete the task,
reporting no issues and a high perceived effectiveness and
comfort in using the system. We registered the completion time
(S3free: 103 s; S3occ: 129 s), the average distance traveled
(S3free: 7.8 m; S3occ: 12.1 m), the average connectivity level of
the whole formation (S3free: 1.1; S3occ: 1.0), and the activation
of the vibrotactile armbands (S3free: 47.7%; S3occ: 37.9%).
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Fig. 6. Experiment in a real environment: scene S3occ. The blue circle indicates the human agent, red and green circles indicate the two quadrotors, and the
cyan circle indicates the grounded mobile robot. (top) from left to right: robot initial positions at time t = 0 and grid of obstacles (black), robot trajectories
and positions t = Tfinal/2 and then at t = Tfinal = 129 s. In this variation of the scene, the team is forced to move around the obstacle, due to the presence of
an additional obstacle unknown to the system (orange). (bottom) video stills of the experiment at the same times as above, from two different points of view. A
video of the full experiment is available at https://youtu.be/N73QUFqpSvo?t=127.

V. DISCUSSION AND CONCLUSIONS

This paper presents a decentralized haptic connectivity-
maintenance control framework for heterogeneous human-
robot teams. We control the coordinated motion of a team
composed of an arbitrary number of mobile robots and one
human, for collaboratively achieving exploration and SAR tasks.
The human physically becomes part of the team, moving in
the same environment of the robots and receiving rich haptic
feedback about the team connectivity and direction toward
a safe path. While the human explores the environment, the
robots move autonomously to keep the team connected, using
a decentralized connectivity-maintenance algorithm.

The first experiment considered a situation in which the
robotic team escorts a civilian out of a disaster area. Results
show that using the haptic interface significantly improves the
performance of the task with respect to using the joypad and
the visual feedback in all metrics except the connectivity level.
Similarly, providing the two pieces of information separately
(path to follow and connectivity level) improved the user’s
performance in all metrics but the connectivity level and the
total force feedback applied to the user. As expected, differences
between the two variations of the scene (with or without
unknown obstacles) were only registered in the completion
time and path length. Most subjects appreciated being provided
with the two feedback cues separately, as it enabled them
to understand the contribution of each piece of information.
Subjects also appreciated the effectiveness of receiving haptic
feedback, although visual cues were considered easier to
understand. This latter result is not unexpected, as humans are
generally more used to follow visual navigation feedback (e.g.,
turn-by-turn car navigation systems, road signs), while they
are not used to follow haptic navigation cues at all. For this
reason, we expect more training to significantly improve the

performance of the haptic modality in all the considered metrics.
It might also seem strange that no differences were found
regarding the connectivity level of the team. However, since
our virtual robots can apply infinite thrusts, the connectivity-
maintenance algorithm is always able to guarantee a well
connected team, even if the human agent completely disregards
the connectivity force cues. However, of course, a failure in
providing the acceleration requested by the algorithm may
result in a loss of connectivity for the team. This undesired
situation might happen in a real scenario. Finally, we discuss
the difference between using kinesthetic feedback only (HC)
vs. combining kinesthetic and vibrotactile feedback (HS). If
no unexpected obstacles are encountered, being gently guided
by kinesthetic feedback seems the straightforward choice, even
if combining the two forces into one conveys less information.
Nonetheless, in the presence of unexpected obstacles, the
operator needs to temporarily move away from the suggested
trajectory to find new unobstructed paths. To do so, in the case
of HC, the operator needs to act against the kinesthetic feedback,
which might become rather strong depending on the situation.
This problem is solved in condition HS, where navigation
information is provided via wearable vibrotactile feedback.
This type of haptic feedback can convey rich navigation cues
while leaving the operator free to disregard it, if necessary.

The second experiment considered a situation in which
a rescuer is escorted by the robotic team inside a disaster
area. One subject carried out the experiment in two real-world
scenarios, receiving feedback about the path to follow and the
connectivity of the team through two vibrotactile armbands.
This success in a real environment using a fully-wearable
solution is very promising, and it may open new interesting
scenarios in the field of ubiquitous robotics and human-robot
collaboration. The human operator does not need anymore to

https://youtu.be/N73QUFqpSvo?t=127
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stay in a fixed position, but instead can move and share the
same environment of the robots.

In addition to the great importance of providing feedback
information (either via haptic and visual stimuli), experiments
show that the overall framework works well and it is robust
to rather different conditions. The team remained well con-
nected in all scenarios, providing the user with meaningful
information about the current connectivity level and easy-to-
follow navigation information. Similarly to a vehicle turn-by-
turn navigation system, our path planning algorithm constantly
indicates the shortest path from the current position to the goal.
If an unexpected obstacle blocks the indicated path, the human
can freely move elsewhere and the path planning will adjust
its suggestion accordingly. As we tested our system in two
different environments, six scenes, enrolling 13 subjects for
more than 12 hours of testing, this work represents a much-
needed extensive evaluation on the topic.

In the future, we will extend this framework for considering
multiple human agents, so as to be able to support an arbitrary
number of mobile robots and humans. Moreover, we plan
to include a dynamic damping factor in (4) for smoothing
any abrupt change in the force feedback when the target
direction/tile changes. Finally, we also want to test more
extensively real-world situations where the human civilian
survivor does not follow exactly the commands of the remote
expert rescuer, e.g., when the communication link does not
work as well as expected, the survivor is injured and cannot
move properly, or the stimulation results hard to understand.
For example, we could adjust the gain on the guidance,
κp, according to how well the survivor follows the rescuer
commands.
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