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Abstract— Compliance in multifingered hand improves grasp
stability and effectiveness of the manipulation tasks. Compli-
ance of robotic hands depends mainly on the joint control
parameters, on the mechanical design of the hand, as joint
passive springs, and on the contact properties. In object
grasping the primary task of the robotic hand is the control of
internal forces which allows to satisfy the contact constraints
and consequently to guarantee a stable grasp of the object.
When compliance is an essential element of the multifingered
hand, and the control of the internal forces is not designed to be
decoupled from the object motion, it happens that a change in
the internal forces causes the object trajectory to deviate from
the planned path with consequent performance degradation.
This paper studies the structural conditions to design an
internal force controller decoupled from object motions. The
analysis is constructive and a controller of internal forces is
proposed. We will refer to this controller as object motion-
decoupled control of internal forces. The force controller has
been successfully tested on a realistic model of the DLR Hand
II. This controller provides a trajectory interface allowing
to vary the internal forces (and to specify object motions) of
an underactuated hand, which can be used by higher-level
modules, e.g. planning tools.

I. INTRODUCTION

In multifingered robotic hands, compliance can be present
at the joint level as part of the mechanical design with
passive springs, at the joint control and at the contacts due
to soft finger pads or to deformable objects. For a complete
geometrical characterization of compliance refer to [9] where
the authors consider also the effects on compliance due to
small changes in grasp geometry.

Compliance is essential in robotic grasping when high
precision is required as in assembling tasks [9]. Compliance
plays a key role in hand design when robustness and depend-
ability are required for human robot interaction as discussed
in [1] where the concept of soft robotics is introduced. Com-
pliance introduced through passive mechanical adaptation is
assuming a great importance also in underactuated robotics
which refers to systems having more DoFs than actuators.
One of the commonly used approaches in underactuated
multifingered hands is to introduce springs to adapt to various
object geometries in a simple and robust way [6], [8], [10],
[11]. The use of soft fingertips is proposed in [2] to generate
variable stiffness for a grasp by modification of the internal
grasp forces. The compensation of the object displacement,
however, was not deeply studied.

There is another reason to explicitly consider stiffness: in
grasp configurations, as in power grasp, where the number of
degrees of freedom (DoF) of the hand is lower than dimension
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Fig. 1. The effect on object trajectory caused by an internal force controller
that does not explicitly consider the decoupling from the object motion.

of the contact force vectors, compliance at the contact points
allows to solve the problem of force distribution, which
becomes statically indeterminate.

The main issue when compliance is not negligible is that
controlling robotic multifingered hands corresponds to trade-
off between the required level of safety, in terms of grasp
stability and robustness, and the level of performances [1].
The compliance strongly couples the force distribution at
the contacts and the hand configuration making difficult to
reliably and independently control both the contact forces and
the object trajectory.

The problem we consider in this paper deals with control
of compliant multifingered hands and refers to performance
of the internal force controller. Consider Fig. 1 and assume
that the hand is grasping an object and is tracking a given
object trajectory as in the left part of the figure. At a certain
point there are increased object forces expected. However,
the controller of internal force does not explicitly takes into
account the object motion, in other terms it is not decoupled
from the object motion control, and moves the object of about
six millimetres in an undesired direction, as shown in the right
part of the figure. The robotic hand applies more internal force
but ends to track a trajectory, the dashed one, different from
the planned one. This error in the trajectory tracking is due
to the compliance of the robotic hand and to the fact that the
internal controller is not explicitly designed to compensate
for such undesired motion.

Note that the undesired and uncontrolled change displace-
ment of the object is very dangerous in all tasks where the
position accuracy is important as in medical applications. This
paper contributes to solve this issue proposing an internal
force controller which is decoupled from the motion of the
grasped object.

This work builds upon previous contribution [12] where
preliminary results on the internal force controller are pre-
sented. Based on our previous work, in which the quasi-static
mappings were derived and examined, the contribution of this
paper consists of proposing a controller which takes the set
point for - what we term - the object motion-decoupled control
of internal forces. The proposed controller gives the setpoints
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for a position controlled robot hand that has passive joint
compliance.

We therefore extend the previous work by applying the
new controller to the hand object dynamics of a compliant
dexterous robotic hand and evaluate its performance by means
of numerical experiments.

The paper is organized as follows: Section II summarizes
the quasi-static and kinematic equations that describes hand
grasping, the subspaces of controllable internal forces and
rigid body motions are identified. Section III define which
controllable internal forces can be produced without changing
grasped object position. Section IV shows an application
of the results theoretically identified in Section III on the
dynamic model of the DLR Hand II [7]. Section V discusses
and summarizes the obtained results.

II. INTERNAL FORCE AND OBJECT MOTION IN GRASPING

A. Static equilibrium equations
The equilibrium, congruence and constitutive equations

necessary for a compliant multifingered hand grasping an
object are here summarized. Further details can be found
in [12]. The force and moment balance for the object are
described by the equation

w =−Gλ (1)

where w ∈ ℜ6 is the external load wrench applied to the
object; λ ∈ℜnl is the contact force vector in stacked notation,
whose dimension nl depends both on the contact model and
on the number of contact points; G ∈ ℜ6×nl is the grasp
matrix. For a complete definition of the grasp matrix along
with the contact models, the reader is referred to [16]. The
solution for the contact forces can be expressed as

λ =−G#w+Aµ

where G# is the pseudoinverse of grasp matrix, A ∈ ℜnl×h

is a matrix whose columns form a basis for the nullspace
of G (ker(G)) and µ ∈ ℜh is a vector that parametrizes the
homogeneous part of the solution to (1). The generic homo-
geneous solution λo = Aµ , represents a set of contact forces
whose resultant force and moment are zero. The contact
forces included in the nullspace of G are referred to as internal
forces.

Internal forces are paramount in grasp control. In force-
closure grasps, a convenient control of internal forces guar-
antees that the whole vector of forces complies with contact
friction constraints notwithstanding disturbances acting on
the manipulated object.

Not all the internal forces can be arbitrarily controlled
by the hand, in order to define the subset of controllable
internal forces the hand actuation has to be considered. The
relationship between hand joint torques τ ∈ℜnq , where nq is
the number of actuated joints, and contact forces is

τ = JT
λ (2)

where J ∈ ℜnl×nq is the hand Jacobian matrix [16]. We
observe that in general the problem is not invertible and thus
the contact forces λ cannot be arbitrarily controlled acting on
joint torques τ .

The nullspaces of matrices J and G and their transposes
have a relevant influence on the behaviour of the manipulation
system. For a complete analysis of these subspaces on the

grasp properties refer to [16] and therein references. If the
intersection between the null space of JT and the null space of
G is not trivial, the system composed of (1) and (2) results to
be statically indeterminate (hyperstatic). In other terms it does
not admit a unique solution. To solve the problem of force
distribution in this case we need to introduce other equations,
usually referred to as constitutive equations, that model the
system compliance.

B. Contacts and hand joints compliance
According to the procedure described in [3], consider an

equilibrium starting configuration, in which the hand, in the
configuration q0, is grasping an object on which the external
load w0 is applied, by the contact forces λ0. The contact force
variation is expressed as follows

δλ = Ks(δch−δco) (3)

where δch ∈ℜnl and δco ∈ℜnl are the displacements of the
contact points on the hand and on the object respectively,
while Ks ∈ℜnl×nl represents the contact stiffness matrix. The
contact point displacement on the hand can be related to joint
variable variation δq as

δch = Jδq (4)

and contact point displacement on the object can be related
to object displacement δu: 1

δco = GT
δu (5)

Eq. (3) can be rewritten in terms of compliance, taking into
account the kinematic relationships (4) and (5) as

Csδλ = Jδq−GT
δu

where Cs = K−1
s ∈ℜnl×nl represents the contact compliance.

Consider the hand joints and assume that they are impedance
controlled with joint stiffness Kq ∈ℜnq×nq . The joint torques
are proportional to the difference between the reference val-
ues of the joint variables, qr, and their actual values q and in
terms of variations we can write

δτ = Kq(δqr−δq)

or
Cqδτ = (δqr−δq)

where Cq = K−1
q ∈ℜnq×nq is the joint compliance.

C. Internal forces
From (2) consider a small variation with respect to the

reference equilibrium conditions. According to differentiation
rules, the following relationship between joint torque and
contact force variations can be computed (see [12])

δλ = K
(
Jrδqr−GT

δu
)

(6)

where

K =
(
Cs + JrCqJT)−1

Jr = J (I +CqT ) T =
∂JTλ

∂q

1The object position and orientation is here defined by a vector u ∈ℜ6,
defined as u = [pT φ T]T, where p ∈ ℜ3 denotes the position of the origin
of the object reference frame with respect to the base one (usually on the
hand palm), while φ ∈ℜ3 represents the orientation of the object reference
frame with respect to the base one, represented here by the Euler angles.
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Contact forces in (6) are those forces generated by joint
reference variation δqr and object displacement δu in a quasi-
static setting. In what follows we are interested in evaluating
the new equilibrium configuration that the system reaches
when the joint reference changes by a term δqr. In particular,
the contact force variation δλ and the object displacement δu.

It is worth underlying that all contact forces variations in
(6) are internal in the sense that they are balanced, since the
external load w applied to the object is considered constant.

In this paper we are interested in particular to evaluate the
effect on the internal forces (6) due to actions on the joint
reference only. In other terms we will evaluate those internal
force that are controllable by changes of the joint reference
δqr only.

The problem of computing the controllable internal forces
has been solved evaluating, from this initial equilibrium con-
dition, the variations of the joint reference variable δqr and
studying the new equilibrium condition.

By differentiating (1) and assuming that the external load
w0 is constant, we obtain

0 =−Gδλ +Nδu, N =−∂Gλ

∂u
(7)

where N takes into account the variation of the grasp matrix
elements in the new equilibrium configuration. This term can
be neglected only if the grasp matrix is constant and/or the
contact forces in the reference configuration are small. By
substituting expression (6) in (7), we can express the object
motion δu as a function of the joint reference variation δqr
as

δu =
(
GKGT +N

)−1
GKJrδqr =V δqr

and the corresponding contact force variation

δλc =
(

I−KGT (GKGT +N
)−1

G
)

KJrδqr = Pδqr

as a function of the joint reference variable change δqr.
Define E ∈ ℜnl×e as a basis matrix of the column space

of matrix P, the generic controllable internal force can be
expressed as

δλc = Ey

where y ∈ ℜe is the generic vector that parametrizes the
controllable contact forces.

D. Rigid object motion

Rigid-body kinematics are of particular interest in the
control of manipulation systems. They do not involve virtual
contact spring deformations, thus they can be regarded as low-
energy motions. In fact, rigid-body kinematics represent the
easiest way to move the object.

Furthermore, if we impose a rigid body motion to the
system, the internal forces do not change. So, when the
internal forces are controlled by the joint actuators, we could
use the rigid body motion to recover, in some way, the object
displacement.

Rigid-body kinematics has been studied in a quasi-static
setting in [3], [4] and in terms of unobservable subspaces
from contact forces in [14], [15]. In [5] the problem has been
analysed also in presence of passive joints.

According to (6), a rigid body motion, i.e. a system dis-
placement that does not involve variation in the contact forces,

can be evaluated as a solution of the homogeneous system:

Jrδqr−GT
δu = 0,

[
Jr −GT][ δqr

δu

]
= 0

Rigid kinematics can then be described by a matrix Γ whose
columns form a basis for ker

[
Jr −GT

]
= im(Γ). The generic

solution of the system (II-D) can be expressed as:[
δqr
δu

]
= Γx

The matrix Γ can be partitioned as follows:

Γ =

[
Γr Γqc 0
0 Γuc Γi

]
where Γr a basis matrix of the subspace of redundant ma-
nipulator motions ker(Jr), Γi a basis matrix of the subspace
of indeterminate object motions ker(GT ), and Γqc and Γuc
conformal partitions of a complementary basis matrix It is
evident that JrΓqc = GT Γuc.

The column space of Γc =

[
Γqc
Γuc

]
consists of coordinated

rigid-body motions of the mechanism, for the manipulator
(Γqc) and the object (Γuc) components. As highlighted before,
physically, rigid-body displacements do not involve variation
of contact forces.

In [15], it has been shown that rigid-body motions are
controllable, i.e. they belong to the space of controllability of
the linear system that represents the dynamics of the system,
with input the vector of joint generalized forces τ . Note that
the rigid-body subspace is only a subspace of the reproducible
motions which also contains motions due to deformations of
elastic elements in the model [3].

III. INTERNAL FORCE CONTROL DECOUPLED FROM
OBJECT MOTIONS

Given a generic object motion that belongs to the rigid
body motion subspace, i.e.

δurb = Γucβ ,

the corresponding set of joint displacements can be evaluated
as

δqrb =V #
δurb +Qµ

where V # denotes the pseudoinverse of V , Q is a matrix whose
columns form a basis of the nullspace of V , µ is an arbitrary
vector whose length is given by the dimension of V nullspace.
The corresponding internal forces that can be generated is

δλc = PV #
Γucβ +PQµ. (8)

Internal force vector (8) belongs to the subspace of internal
forces controllable and compensable: controllable because
they can be expressed as δλc =Pδqc and thus can be realized
acting on the joints, compensable because the corresponding
object displacement δuc = V δqc belongs to the rigid body
motion subspace and thus can be recovered with a suitable
compensating control action.

It is worth underlying that the existence of the compensat-
ing controller is guaranteed by the fact that the rigid object
motions in the column space of Γuc and the controllable
internal forces in the column space of E can be jointly and
independently controlled acting on the reference value of the
joint variables as proved in [14].
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Fig. 2. Block diagram of the internal force and object motion control.
The inner loop controls finger joint displacement, while the outer one seeks
to control the internal forces to the reference value λr without moving the
object.

The internal force controller corresponding to no motion of
the object consists of two components. The first δq f sets joint
reference to track the desired internal forces δλc that belongs
to the controllable and compensable subspace. The internal
force controller alone generates an undesired effect which is
the displacement of the object position in the subspace of the
rigid-body object motions which can be compensated by an
additional variation of joint references δqc. The internal force
controller with compensated motion is

δqr = δq f +δqc (9)

where
δq f = P#

δλc (10)

δqc =−ΓqcΓ
#
ucV δq f (11)

This control strategy allows to change the internal forces
without affecting the motion of the grasped object.

The design of the object motion-decoupled control of in-
ternal forces has been performed in a quasi-static setting.
We will validate the approach in a numerical experiment
considering the hand and object dynamics.

The block diagram of the proposed controller is reported
in Fig. 2. An external control loop implements the object
motion-decoupled control of internal forces in (9). The refer-
ence for the internal force vector λr is compared to the current
contact forces λ and the error

δλc = λr−λ

drives the external force controller which integrates the cur-
rent value of the joint reference variable with the quasi-static
joint reference displacement given by the decoupling control
in (9).

The robotic hand joints are controlled with a joint-level
impedance controller. The reference inputs are the reference
joint rotation angles qr and their angular velocities q̇r. The
joint-level impedance controller can be represented as a me-
chanical stiffness for the proportional term and a viscous
damping for the derivative term. The proportional coefficient
matrix corresponds to the mechanical stiffness Kq in Sec-
tion II. The joint motor torques, expressed with respect to
the joint rotation axis, are given by

τ = Kq(qr−q)+Bq(q̇r− q̇)+g(q)

where the stiffness matrix Bq is the damping matrix and is
chosen as a function of the stiffness matrix and the hand
inertia matrix, to get a sufficiently damped system response,
and g(q) is the gravity vector of the hand links.

Fig. 3. Robotic hand and grasped object in the initial configuration.

IV. NUMERICAL EXPERIMENTS

A. Hand description
In this section some experiments performed with a realistic

numerical model of hand dynamics to test the object motion-
decoupled control of internal forces proposed in Section III
are described. The robotic hand used in the numerical ex-
periments is the multifingered anthropomorphic DLR Hand
II [7]. This device is composed of four identical modular
fingers, each of them with 3 DoFs, so the hand has overall
12 DoFs. Each joint, except the distal ones, is provided with
its own motor. The kinematic structure of each finger is
anthropomorph–inspired: the metacarpo - phalangeal joint
of each finger, the joint connecting the finger to the hand
palm, has 2 DoFs, while the proximal interphalangeal joint
has a single DoF. The distal interphalangeal finger rotation is
coupled with the proximal one, with a gear ratio 1:1. Each
finger consists of three identical modular parts and has three
different type of sensors: each joint is provided with a torque
sensor and a position sensor.

We consider an initial configuration where the object is
grasped by the hand, the contacts are placed at the four fin-
gertips and the initial contact forces λ (0) = 0. Henceforth we
will consider the variations of the contact forces with respect
to the initial condition. The hand initial configuration, which
is chosen such that the system is initially in equilibrium, is
shown in Fig. 3. The approaching phase in not considered
in this numerical experiment, we suppose that the hand in
the initial configuration is grasping the object. During the
numerical experiment, the reference contact forces λr are
varied and the actual contact forces and object displacement
are analyzed. In particular the effect of the compensating term
δqc is investigated.

The object is defined through its contact points and normals
at the contact points. The four contact points are supposed to
be on the four fingertips of the hand. For simplicity we choose
an object frame OXY Z attached to the geometric center of
the fingertip positions (see Fig. 3). The X and Y axes are
chosen on the plane spanned by the directions connecting
the direction through the thumb and middle fingertips to those
connecting the index with the ring fingertips, while the Z axis
is orthogonal to such plane [17]. The unit normal vectors at
the contact points are defined as the directions connecting
the contact points to the object center above defined. For
this numerical experiment the contacts were modeled as point
contacts with friction (PCWF) [16].

By assuming a suitable selection of y, each contact force
vector lies within the friction cone and has three components
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only. The dimension of the overall contact force vector is
λ ∈ℜ12. The dimensions of the grasp matrix are G ∈ℜ6×12,
while the dimensions of the hand Jacobian matrix are J ∈
ℜ12×12. No hand kinematic singularities2 occurred during
the numerical experiments. The contact stiffness matrix Ks
is diagonal, but the stiffness values are not the same for
each finger. The contact stiffness matrix is chosen to obtain
an asymmetric stiffness distribution, to highlight the effect
on the object motion trajectory due to an uncompensated
internal force controller, and to validate the effect of the
proposed control motion-decoupled controller. The thumb
stiffness has been chosen lower than the other fingers’ ones,
i.e. Ks = diag[Ks,t ,Ks, f ], where Ks,t = ks,t I3, and Ks,t = ks, f I9
with ks,t = 50 N/m and ks, f = 100 N/m respectively, while I3 ∈
ℜ3×3 and I9 ∈ ℜ9×9 are identity matrices. In the numerical
experiments, a viscous damping term was added, such that
the contact forces are computed as

λ = Ks(ch− co)+Bs(ċh− ċo)

with the damping matrix Bs = bsI12, in which bs =
5 Ns/m. Also the joint stiffness matrix Kq is diago-
nal, in this case different values were adopted for each
joint: Kq = diag[kq,1, · · · ,kq,12], with kq,i = 9Nm/rad for the
metacarpo - phalangeal joints, while kq,i = 4.5 Nm/rad for
the proximal-interphalangeal joints. The elements of the joint
impedance control damping matrix have been chosen pro-
portional to the stiffness ones. The geometric terms are not
considered in these numerical experiments. Internal force
subspace is six–dimensional, i.e. E ∈ ℜ12×6 and rigid body
motion subspace is 6–dimensional Γ ∈ℜ18×6.

A realistic model is used to simulate dynamics of the DLR
hand II [13]. The grasped object is modelled as a rigid body
subject to a set of contact forces. Its dynamics is described
by the differential equation system in [13]. The contact force
vector is simulated according to a compliant model taking into
account the fingertip contact stiffness.

B. Experiments
Several experiments were performed to validate the effec-

tiveness of the proposed object motion-decoupled control of
internal forces.Each experiment is composed of two parts: in
the first oneonly the term that allows to control internal force
error, without object motion compensation, was considered,
i.e. δqr = δq f , in the second one both the contact force
and the object displacement were controlled according to
the control law defined in (11). The time of the numerical
experiment was 20s, with an integration routine with constant
step size of 0.001s. Some tests were performed with smaller
step sizes, but the results did not change significantly. The
reference contact force λ = λ0 was set constant.

Fig. 4 shows the contact force variations with respect to the
the initial value λ0 at the fingertips during the numerical ex-
periments, for each finger, compared with the reference force.
Fig. 4 shows the results obtained when both the contact force
and the object motion are controlled. The results obtained
without object motion compensation look very similar to
those shown in Fig. 4, even if the steady state error is smaller,
as we can see observing the numerical results summarized in
in Table I. As it can be seen from the plots, the reference

2The finger has only one (boundary) singularity, that is the strechted out
configuration.
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Fig. 4. Norms of the contact forces at the four fingertips during the numerical
experiment, obtained with the object motion-decoupled control of internal
forces defined in eq. (11). Each diagram represents, for each finger, the actual
(solid line) and reference (dashed line) contact force norm.

Motion compensation No Yes
object displacement (mm) 6.0 1.8
object displacement x (mm) 1.7 0.45
object displacement y (mm) 2.1 0.57
object displacement z (mm) 5.2 -1.7
mean force error (N) 2.08×10−5 0.0132
mean force error (%) 0.0031 2.12

TABLE I
CONTACT FORCE STEADY STATE ERRORS AND OBJECT DISPLACEMENT

WITH AND WITHOUT OBJECT MOTION COMPENSATION.

force signal is followed with a stable dynamics and the
steady state errors, even if larger than the non-compensated
case, are acceptably small, the mean value, in the considered
simulation, is about 2%.

Fig. 5 shows the moduli of the object displacement for
the two numerical experiments. The steady state displacement
components and the amplitudes obtained in the experiments
are summarized in Table I. The final object displacement
amplitude is 6 mm without the compensating term and 1.8
mm with the object displacement compensation. The results
clearly show the effect of compensation of object motion in
contact force control, that allows to significantly reduce the
final displacement.

Finally, Fig. 6 illustrates the numerical result of the hand
model viewer software: in the left column the initial hand
and object (hockey puck) are shown, while in the left one
the final configurations obtained without the proposed con-
troller and with it are shown. The initial object configuration
is superimposed (black disks) to the new one. As it can
be seen, without the proposed controller, the object visibly
moves while the contact forces are changing, on the contrary,
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Fig. 5. Displacement of the object center (amplitude) during the numerical
experiment, obtained controlling only the contact forces, without compen-
sating the object motion (dashed line), and with the object motion-decoupled
control of internal forces defined in eq. (11) (solid line).

initial final (no motion compensation)

initial final (motion compensation)
Fig. 6. Robotic hand, object displacements and contact forces obtained in
the experiments, first row: controlling only the contact forces, without com-
pensating the object motion; second row: with the object motion-decoupled
control of internal forces defined in eq. (11), that compensates the object
motion. The left figures show the initial hand and object configuration, the
right ones the final.

introducing the motion compensation term, the object motion
sensibly decreases.

V. CONCLUSIONS

The coupling between internal force control and object
motion control is crucial in compliant multifingered hands.
Intuitively, when compliance is significant, it happens that a
variation in the contact forces applied on the grasped object
causes the object trajectory to deviate from the planned path
with consequent performance degradation. This paper studied
the structural conditions to design an internal force controller
decoupled from object motions. The analysis was constructive
and a controller of internal forces was proposed, starting from
a quasi static grasp analysis. We referred to this controller as
object motion-decoupled control of internal forces.

The force controller was then successfully tested on a real-
istic model of the DLR Hand II. The results of the numerical
tests demonstrated that the proposed object motion-decoupled
control of internal forces, derived with a quasi static analysis,
can effectively produce a significant reduction on the object
displacement also in dynamic conditions, when the reference

contact force are varied: the final object displacement re-
duction obtained introducing the compensating term in the
control system was significantly lower than those obtained
simply controlling the squeezing forces.

Future developments of this work will include the analysis
of the external wrench contribution to the object dynam-
ics and the effect of the geometrical terms on the motion-
decoupled control of internal forces.
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